

Institute of Electrical Engineering (ETI) **Power Electronic Systems** Kaiserstr. 12 Bldg. 11.10 76131 Karlsruhe, Germany www.eti.kit.edu

3 level NPC T-Type AFE converter with different strategies for DC-Link voltage balancing

M.Sc. Fabian Stamer, M.Sc. Firat Yüce, Prof. Dr.-Ing. Marc Hiller

contact person: Fabian Stamer - fabian.stamer@kit.edu

Hardware and control concept

 \rightarrow $u_x(t)$

Q4

DC-link capacitor

 U_{C1}

 U_{C2}

0 • •

3 Level 3 phase converter

	• •
	• <u> </u>

- **Control of the AFE converter**

- Dynamic control of active and reactive power
- Maintaining a constant dc-link voltage

Modulation methods for balancing the DC link voltage

Additive zero component

- No space vector modulation needed
- Control of DC-link voltage

Hysteresis controller

- Choose best small vector for capacitor balancing
- Control of DC-link voltage

Virtual vector

- Prevent zero point current with a new virtual vector
- No control of DC-link voltage

Hysteresis virtual vector

- No zero point current
- Control of DC-link voltage
- Reduction of capacitor possible

Measurement Results for testing the modulation methods

Additive zero component controller

Virtual vector control

KIT – The Research University in the Helmholtz Association

www.kit.edu