

Karlsruhe Institute of Technology

Institute of Electrical Engineering (ETI) **Hybrid Electric Vehicles** www.eti.kit.edu

Theoretical Analysis of Synchronous Machines with Displaced Reluctance Axis

Patrick Winzer, Martin Doppelbauer

normalized speed n	ang ang
A: initial machine design: $\psi_{\text{PM}} = 0.4, \zeta = 3, \beta = 90^{\circ} \rightarrow t = 0.71$	tement 45
B1: improved performance: $\psi_{\text{PM}} = 0.4, \zeta = 3, \beta = 60^{\circ} \rightarrow t = 0.74$	displace
B2: reduced PM material, equal torque: $\psi_{PM} = 0.35$, $\zeta = 3$, $\beta = 60^{\circ} \rightarrow t = 0.71$	-45 0 0.2 0.4 normalized PN

Conclusion

- unified theory of synchronous machines with displaced reluctance axis, dependent on **only three parameters**
- derivation of optimal torque **control strategies**
- further degree of freedom for machine design:
 - optimization of cost (e.g. case B1: **11.4% less PM material** for equal torque)
 - optimization of performance (e.g. case B2: 4.3% more torque using the same amount of PM)

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

