

Vorlesung "Praxis Elektrischer Antriebe" Einleitung

SS 2019

Elektrotechnisches Institut (ETI) - Lehrstuhl Hybridelektrische Fahrzeuge (HEV)

Vorlesung

Vorlesung: Donnerstags, 8:00 – 9:30 Uhr.
 Termine: http://www.eti.kit.edu → Studium und Lehre → "Praxis Elektrischer Antriebe"

• **Vorlesungsunterlagen:** Foliensatz wird als PDF auf Vorlesungshomepage zum Download bereitgestellt.

Nutzername: pea

Passwort: **Durchflutungsgesetz**

• Sprechstunde: nur nach Vereinbarung!

• Prüfung: Schriftlich

Prof. Dr.-Ing.

Martin Doppelbauer

Leitung Lehrstuhl Hybridelektrische Fahrzeuge

Tel.: +49 (721) 608-46250 Martin.Doppelbauer@kit.edu Campus Süd, Geb. 11.10 Raum 114

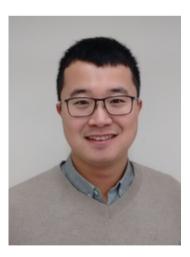
Marie-Louise Keilbach

Sekretariat / Assistenz

Tel.: +49 (721) 608-42473

Marie-Louise.Keilbach@kit.edu

Campus Süd, Geb. 11.10


Raum 113

Übung

- Übung: Dienstags, 14:00 15:30 Uhr.
 Genaue Termine: http://www.eti.kit.edu → Studium und Lehre → "Übung Praxis Elektrischer Antriebe"
- Übungsblätter: Vorab per Download auf Übungshomepage bereitgestellt. Musterlösung erscheint nach der Übung. Das erforderliche Passwort wird in der Vorlesung bekannt gegeben.
- Übungsleiter:

M.Sc. **Hongfei Lu**

Fremderregte Synchronmaschine als Traktionsantrieb

Tel.: +49 (721) 608-41776

Hongfei.Lu@kit.edu

Campus Ost, Geb. 70.04

Raum 106

Prüfung / Voraussetzungen

- Die Vorlesung richtet sich an **Bachelor-Studierende** der **Elektrotechnik (ETIT)** mit dem entsprechenden Vorwissen in Elektrischen Maschinen und Leistungselektronik aus der Vorlesung EMS von Prof. Braun.
- Die Vorlesung ist ebenfalls geeignet für Bachelor- und Master-Studierende der Mechatronik (MIT) mit dem entsprechenden Vorwissen in Elektrischen Maschinen und Leistungselektronik aus der Vorlesung EMS von Prof. Braun. Eine Anrechnung kann entweder im Bachelor- oder im Master-Studium erfolgen (XOR).
- Die Vorlesung ist nur dann geeignet für **Studenten** des **Maschinenbaus**, wenn zusätzliches Vorwissen über Elektrische Maschinen und Leistungselektronik während des Studiums erworben wurde.
- Schriftliche Prüfung (2 h) in deutscher Sprache Rechenaufgaben und Verständnisfragen. Zur Vorbereitung ist der regelmäßige Besuch von Vorlesung und insbesondere der Übungen sehr empfehlenswert.

Einleitung

Vorlesungsübersicht ETI

Grundlagen

EMS

Elektrische Maschinen und Stromrichter Prof. Braun

EEMB

Elektrotechnik und Elektronik für Maschinenbau

Dr. Becker

Vertiefung Anwendungen

Electrical Machines (ENTECH) Prof. Doppelbauer

EM

PE

Power Electronics (ENTECH) Prof. Hiller

PEA

Praxis Elektrischer Antriebe Prof. Doppelbauer

LES

Praxis Leistungselektronischer Systeme Prof. Hiller

LE

Leistungselektronik
Prof. Hiller

HEF

Hybride und
Elektrische Fahrzeuge
Prof. Doppelbauer

ES

Elektrische Schienenfahrzeuge **Prof. Gratzfeld**

HLS

Hochleistungs-Stromrichter Prof. Braun

LPW

Leistungselektronik für Photovoltaik und Wind Prof. Burger

AVT

Aufbau- und Verbindungstechnik Dr. Blank

Spezialisierung

EEM

Entwurf
Elektrischer Maschinen
Prof. Doppelbauer

SBD

Systemanalyse und Betriebsverhalten ASM Dr. Becker

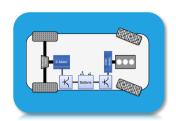
REA

Regelung Elektrischer
Antriebe
Prof. Braun

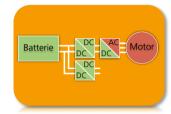
SRST

Stromrichter Steuerungstechnik Hr. Liske

STIE

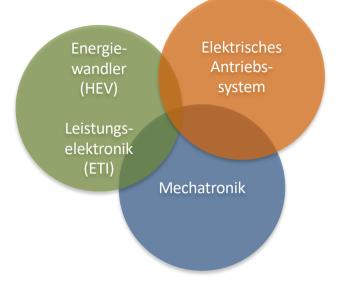

Schaltungstechnik in der Industrieelektronik

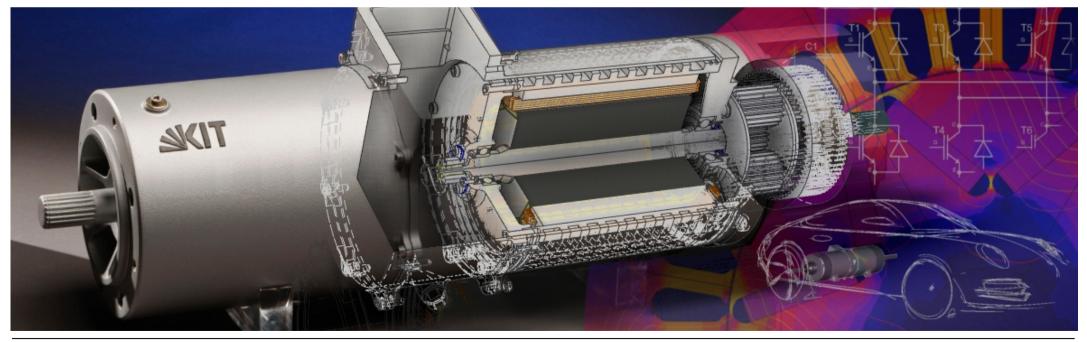
Hr. Liske



Professur für Hybridelektrische Fahrzeuge (HEV)

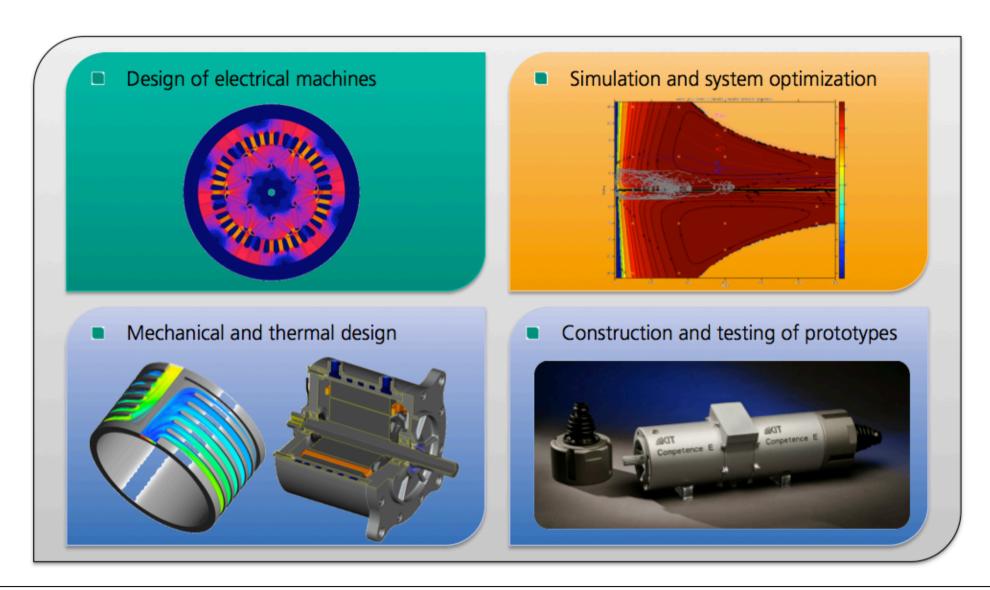
von der **Topologie**

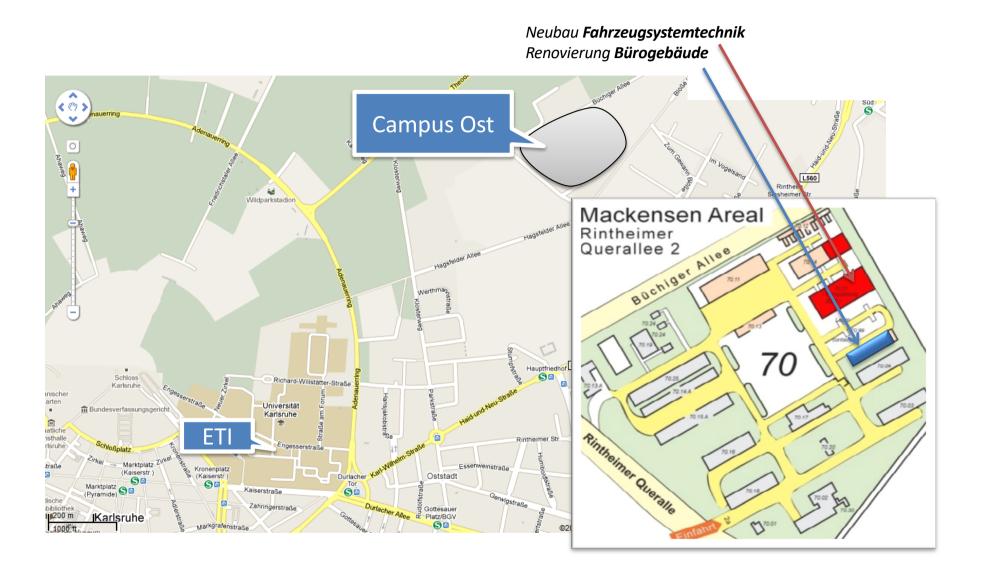

über das **System**



zu den Komponenten

Unsere Mission: Kompoi Der Elektrische Antriebsstrang




Professur für Hybridelektrische Fahrzeuge (HEV)

Standorte

8

Prüffeld am Campus Ost

Elektrotechnisches Institut (ETI)

Lehrstuhl Hybridelektrische Fahrzeuge

Formula Student Motoren

	KIT15e
0 – 100 km/h	2,5 s
Weight	195 kg
Top Speed	116 km/h
Battery Capacity	6,5 kWh
Cont. Power	4 x 30 kW
Peak Power	4 x 70 kW

	2014	2015-17
Type of Machine	PMSM	PMSM
Top Speed	20.000 /min	30.000 /min
Total Weight	5 kg	4,5 kg
Power Density Continuous Power	0,17 kg/kW (6 kW/kg)	0,15 kg/kW (6,7 kW/kg)

Inhaltsverzeichnis der Vorlesung

Kapitel 1: Antriebssysteme

Kapitel 2: *Elektromotoren* (2 Vorlesungen)

Kapitel 3: Übertragungselemente

Kapitel 4: Antrieb und Last

Kapitel 5: Anlauf, Bremsen, Positionieren

Kapitel 6: Thermik und Schutz

Kapitel 7: Drehzahlveränderbare Antriebe (2 Vorlesungen)

Kapitel 8: Elektromagnetische Verträglichkeit

Kapitel 9: Kleinantriebe

Kapitel 10: Geräusche (0,5 Vorlesung)

Kapitel 11: Antriebe mit begrenzter Bewegung (0,5 Vorlesung)

Elektrotechnisches Institut (ETI)

Lehrstuhl Hybridelektrische Fahrzeuge

Terminplan

-	KW17	23.04.2019	Termin entfällt
V1	KW17	25.04.2019	Einleitung - Antriebssysteme
-	KW18	30.04.2019	
V2	KW18	02.05.2019	Elektromotoren I
V3	KW19	07.05.2019	Elektromotoren II
Ü1	KW19	09.05.2019	Wicklungen, Asynchronmaschine
-	KW20	14.05.2019	Termin entfällt
V4	KW20	16.05.2019	Elektromotoren III
Ü2	KW21	21.05.2019	Synchronmaschine am Netz
V5	KW21	23.05.2019	Übertragungselemente
V6	KW22	28.05.2019	Antrieb und Last
-	KW22	30.05.2019	Termin entfällt
Ü3	KW23	04.06.2019	Bewegung
V7	KW23	06.06.2019	Anlauf, Bremsen, Positionieren
-	KW24	11.06.2019	Termin entfällt
-	KW24	13.06.2019	Termin entfällt
-	KW25	18.06.2019	Termin entfällt
-	KW25	20.06.2019	Termin entfällt
Ü4	KW26	25.06.2019	Anlauf, Bremsen
V8	KW26	27.06.2019	Thermik und Schutz
-	KW27	02.07.2019	Termin entfällt
V9	KW27	04.07.2019	Drehzahlveränderbare Antriebe
Ü5	KW28	09.07.2019	Temperaturmodell
V10	KW28	11.07.2019	EMV I
-	KW29	16.07.2019	Termin entfällt
V11	KW29	18.07.2019	EMV II und Kleinantriebe
Ü6	KW30	23.07.2019	Antriebe mit Frequenzumrichtern
V12	KW30	25.07.2019	Geräusche und Antriebe mit begrenzter Bewegung

Literaturempfehlungen

Manfred Meyer, Elektrische Antriebstechnik I + II, Springer Verlag, 1985 + 1987

Rolf Fischer, *Elektrische Maschinen*, Carl Hanser Verlag, 2017

Edwin Kiel, Antriebslösungen für Produktion und Logistik, Springer Verlag / VDI-Buch, 2007

Bertolini / Fuchs, *Handbuch Elektrische Kleinantriebe*, De Gruyter Oldenbourg, 2018

Dierk Schröder, *Elektrische Antriebe – Grundlagen*, Springer Verlag, 2017

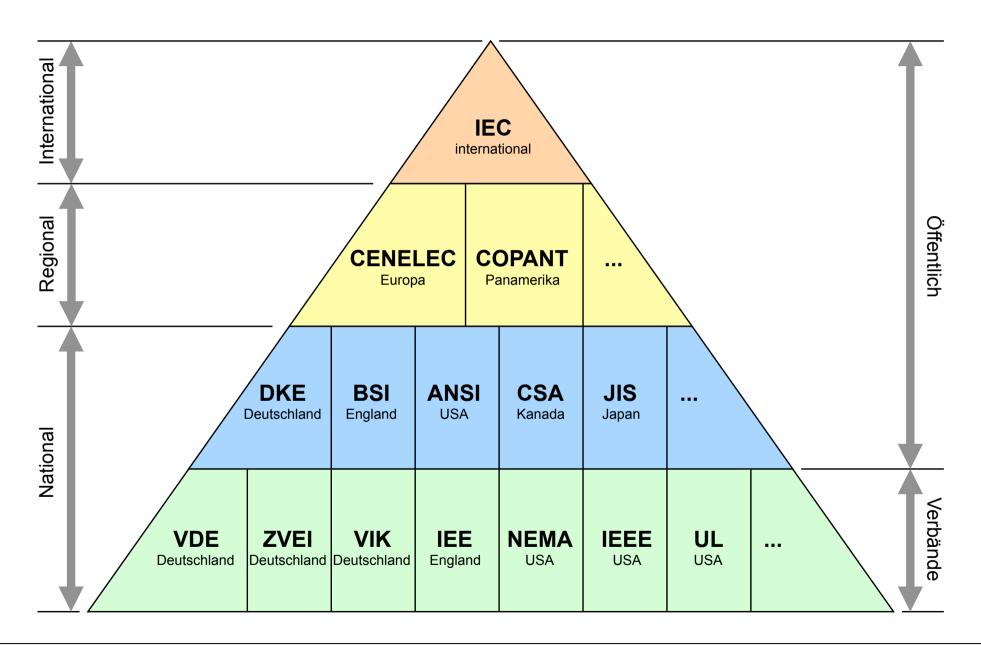
Vorwort

Die überarbeitete Vorlesung "Praxis elektrischer Antriebe" ist aus dem Skript von Prof. Braun (KIT/ETI) entstanden, das wiederum auf die Vorlesung "Elektrische Antriebe A" von Prof. Manfred Meyer (vormals Universität Karlsruhe/ETI) aufbaut. Ich bedanke mich herzlich bei Prof. Braun für seine Unterstützung bei der Überarbeitung der Vorlesung.

Die vorliegenden Folien enthalten neben den Abbildungen weitgehend den kompletten Text des bisherigen Skriptes, welches damit obsolet wird, aber bei Bedarf weiterhin verwendet werden kann.

Zum tieferen Verständnis ist darüber hinaus die Lektüre der Bücher "Elektrische Antriebstechnik" Band 1 und Band 2 empfehlenswert. Leider sind beide Bände nicht mehr neu erhältlich, stehen aber in der Bibliothek zur Verfügung.

Für ein grundlegenderes Verständnis der (geregelten) elektrischen Maschinen kann das Buch von Prof. Fischer sehr empfohlen werden. Eine gute Einführung in die Antriebstechnik bieten auch die Aufsätze im Buch von Dr. Kiel. Das Buch von Prof. Stölting gibt einen hervorragenden Überblick über Kleinantriebe und weitere Themen der Antriebstechnik, die vielfach auch für größere Antriebe relevant sind.


Wie erwähnt sind viele Abbildungen und Texte der Folien dieser Vorlesung aus dem Skript von Prof. Braun bzw. den Büchern von Prof. Meyer entnommen worden. Darauf wird nachfolgend nicht weiter hingewiesen. Sofern jedoch weitere Literaturquellen verwendet wurden, ist dies im Einzelfall genau angegeben.

Gemäß gesetzlicher Regelung ist die Verwendung von geschütztem Material für Lehrzwecke an öffentlichen Einrichtungen zulässig. Es darf jedoch nicht darüber hinaus verbreitet werden. Die Folien der weiteren Kapitel sind daher mit einem Passwort geschützt, welches nur die Hörer der Vorlesung unentgeltlich von den Assistenten in der Übung erhalten. Ich bitte dringend, von einer Veröffentlichung der Folien (auch in Auszügen) im Internet oder an anderer Stelle abzusehen.

Normung

Normung II

Die IEC (International Electrotechnical Commission) ist eine internationale überstaatliche Normungsorganisation im Bereich der Elektrotechnik und Elektronik. Ihre Standards dienen als Basis für regionale (z.B. Europäische) und nationale Normen. Die IEC wurde 1906 in London gegründet. Hauptsitz ist heute Genf in der Schweiz. Mitglieder bei der IEC können nur Nationalstaaten werden, keine Einzelpersonen oder Organisationen. Aktuell sind 162 Staaten in der IEC organisiert (davon 81 als Mitglieder und 81 als Beobachter). Sie haben bei allen Beschlüssen und Abstimmungen eine gleichwertige Stimme.

Die Vorbereitung der Arbeit bei der IEC wird in nationalen Komitees durchgeführt (in Deutschland nimmt der VDE mit der DKE diese Aufgabe wahr). Es gibt über 6000 Standards im IEC-Katalog, die von über 1000 Arbeitsgruppen bearbeitet und laufend aktualisiert werden. Die Arbeitsgruppen (Working Groups) sind in technischen Komitees (TCs) organisiert, wovon es 174 gibt. Das TC2 beschäftigt sich mit Elektromotoren und wurde bereits 1910 gegründet. Themen der Leistungselektronik werden in TC22 bearbeitet.

CENELEC (Comité Européen de Normalisation Électrotechnique) ist in gewisser Weise ein europäisches Spiegelbild der IEC. Mitglieder sind derzeit 32 europäische Länder plus 11 Beobachter aus angrenzenden Regionen. Auch bei CENELEC gibt es Arbeitsgruppen TC2 und TC22 für Motoren und Leistungselektronik, die allerdings wenig eigene Standards erstellen, sondern im Wesentlichen die IEC Normen übernehmen – gelegentlich mit leichten Anpassungen.

Die DKE (Deutsche Kommission Elektrotechnik Elektronik Informationstechnik im DIN und VDE) ist die nationale deutsche Organisation für die Erarbeitung von Normen im Bereich der Elektrotechnik. Sie ist das deutsche Mitglied in der IEC und bei CENELEC.

Die DKE ist in Fachbereiche unterteilt. Die Leistungselektronik wird im Fachbereich 2 bearbeitet (K226), die elektrischen Maschinen im Fachbereich 3 (K311). Für spezielle Themen gibt es eine Unterkommission (UK311.1 - Niederspannungsmotoren) und mehrere Arbeitskreise (AK311.0.x). Insbesondere das K311 blickt auf eine lange Tradition zurück. Die ursprüngliche Kommission für elektrische Maschinen im VDE wurde bereits im Jahre 1900 gegründet, also einige Jahre vor der Gründung der IEC und des TC2.

Einleitung

Normung III

In Europa sind für die erforderliche CE-Kennzeichnung von Antriebssystemen folgende Richtlinien relevant:

• Niederspannungsrichtlinie 2014/35/EU

Betrifft die Sicherheit elektrischer Betriebsmittel zwischen 50 V bis 1000 V Bemessungsspannung.

Maschinenrichtlinie 2006/42/EG

Betrifft alle Maschinen und Anlagen mit bewegten Teilen. Sie regelt ein einheitliches Schutzniveau zur Unfallverhütung für Maschinen beim Inverkehrbringen innerhalb des europäischen Wirtschaftraumes.

• EMV-Richtlinie 2014/30/EU

Betrifft alle elektrischen Geräte, jedoch nicht Komponenten, die nicht allgemein erhältlich sind. Ziel der EMV-Richtlinie ist ganz allgemein eine Vermeidung einer elektromagnetischen Störung anderer Betriebsmittel durch ein Betriebsmittel.

• **ErP-Richtlinie** 2009/125/EC (Energy-related-Products = Öko-Design)
Betrifft derzeit nur Drehstrom-Asynchronmotoren zwischen 0,75 bis 375 kW – zukünftig auch Antriebssysteme (Motor, Umrichter, Pumpen).

• ATEX-Richtlinie 2014/34/EU

Betrifft Geräte und Schutzsysteme zur Verwendung in explosionsgefährdeten Bereichen.

Der Hersteller ist verpflichtet, die Einhaltung der für sein Produkt zutreffenden Richtlinien selbst zu überprüfen und durch eine Konformitätsbewertung zu bescheinigen (Ausnahme ATEX-Richtlinie – hier ist ein Zertifikat einer Prüfbehörde erforderlich).

Dies geschieht auf Basis von CENELEC- und CEN-Normen, die für die jeweiligen Richtlinien im Amtsblatt der EU gelistet werden.

Wenn nach Meinung des Herstellers alle Anforderungen abgedeckt sind, darf er das Produkt mit einem CE-Kennzeichen versehen und auf den Markt bringen.

Die sog. *Marktaufsicht*, eine Landesbehörde, prüft zu Kontrollzwecken regelmäßig zufällig ausgewählte Produkte (oder auf Hinweis von Industrieverbänden auch ganz bestimmte Produkte) auf ihre Richtlinienkonformität. Werden Missstände aufgedeckt, kann der Hersteller mit empfindlichen Geldstrafen belegt werden.

