

Prof. Dr.-Ing. M. Doppelbauer Prof Dr.-Ing. M. Hiller

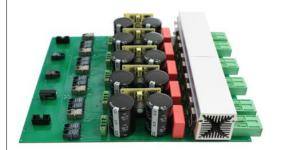
Vertiefungsrichtung 6 Elektrische Antriebe und Leistungselektronik

Masterstudiengang ETIT

Berater

M.Sc. Simon Foitzik (ETI)

Juli 2020 (SPO 2018)



Vertiefungsrichtung 6: Elektrische Antriebe und Leistungselektronik

Der sichere, wirtschaftliche und umweltschonende Umgang mit Energie ist eine der Hauptaufgaben der kommenden Jahre. Eine besondere Rolle spielt hierbei die elektrische Energie, da sie für fast alle wichtigen Anwendungen die optimal transportierbare und steuerbare Energieform Antriebe ist: Beförderung sowie zur Bearbeitung, Beleuchtungseinrichtungen, Informationsverarbeitung und Informationsübertragung. Schlüsselkomponenten für die Energieerzeugung und Energieanwendung sind dabei elektrische Antriebe und

leistungselektronische Stellglieder. Durch die intelligente Signalverarbeitung schaffen die Sensoren und Aktoren neue Funktionalitäten wie zum Beispiel elektrisch betriebene Kraftfahrzeuge, Flugzeuge und Schiffe, humanoide Roboter, Wind- und Solarkraftwerke. Die für Planung, Entwicklung und Anwendung dieser Technik notwendigen Kenntnisse werden in der Vertiefungsrichtung Elektrische Antriebe und Leistungselektronik vermittelt.

Vertiefungsrichtung: Elektrische Antriebe und Leistungselektronik Grundlagen zur Vertiefungsrichtung

VorlNr.	Lehrveranstaltung	Sem.	SWS	LP
23498 / 499	Numerische Methoden	SS	2+1	5
2302105	Messtechnik	WS	2+1	5
23616	Communication Systems and Protocols	SS	2+1	5
Summe:				15

Pflichtbereich der Vertiefungsrichtung

VorlNr.	Lehrveranstaltung	Sem.	sws	LP		
23183	Optimization of Dynamic Systems	WS	2+1	5		
23372 / 374	Energieübertragung und Netzregelung	SS	2+1	5		
23320 / 322	Leistungselektronik	SS	2+1	5		
23324	Entwurf elektrischer Maschinen	WS	2+1	4		
23311	Praxis elektrischer Antriebe	SS	2+1	4		
23329	Praxis leistungselektronischer Systeme	WS	2+0	3		
23312	Regelung elektrischer Antriebe	SS	3+1	6		
23316	Hochleistungsstromrichter	WS	2+0	3		
und eines der folgenden Praktika:						
23331	Elektrische Antriebe und Leistungselektronik	SS	0+4	6		
23398	Energietechnisches Praktikum	WS	0+4	6		
Summe:				41		

Wahlbereich der Vertiefungsrichtung

Die Auswahl der wählbaren Vertiefungsrichtungsfächer ist nicht auf die unten aufgeführten Lehrveranstaltungen beschränkt. Neben anderen Lehrveranstaltungen aus der Fakultät für Elektrotechnik und Informationstechnik können Sie auch Fächer aus dem Vorlesungsangebot anderer Fakultäten wählen. Die Pläne müssen mit dem Berater abgestimmt werden.

VorlNr.	Lehrveranstaltung	Sem.	SWS	LP
23344	Systemanalyse und Betriebsverhalten der Drehstrommaschine	SS	4	6
23207 / 213	Batterien und Brennstoffzellen	WS	2+1	5
800509	Methoden der Signalverarbeitung	SS	3+1	6
23134	Praktikum Digitale Signalverarbeitung	SS	4	6
23173	Nichtlineare Regelungssysteme	SS	2	3
23177 / 179	Regelung linearer Mehrgrößensysteme	WS	3+1	6
23188	Modellbasierte Prädikativregelung	SS	2	3

VorlNr.	Lehrveranstaltung	Sem.	SWS	LP
23214	Batterien- und Brennstoffzellensysteme	SS	2+0	3
23231	Sensoren	WS	2	3
23232	Praktikum Sensoren und Aktoren	SS	4	6
23317	Seminar: Neue Komponenten und Systeme der Leistungselektronik	WS	3	4
23327	Schaltungstechnik in der Industrieelektronik	WS	2	3
23331	Praktikum Elektrische Antriebe und Leistungselektronik	SS	4	6
23330	Stromrichtersteuerungstechnik	SS	2	3
23356	Erzeugung elektrischer Energie	WS	2	3
23360 / 362	Hochspannungstechnik I	WS	2+1	4
23361 / 363	Hochspannungstechnik II	SS	2+1	4
23371 / 373	Elektrische Energienetze	WS	2+2	6
23378	Elektronische Systeme und EMV	SS	2	3
23381	Windkraft	WS	2	4
23382	Elektrische Installationstechnik	SS	2	3
23383	Energiewirtschaft	WS	2	3
23388	Praktikum Informationssysteme in der elektrischen Energietechnik	SS	4	6
23390	Aufbau und Betrieb von Leistungstransformatoren	SS	2	3
23392 / 394	Hochspannungsprüftechnik	WS	2+1	4
23398	Energietechnisches Praktikum	WS	4	6
23633	Seminar: Wir machen ein Patent	SS	2	3
23642	Systems Engineering for Automotive Electronics	SS	2	3
23674	Praktikum Schaltungsdesign mit FPGA	SS	4	6
23681	Supraleitende Systeme der Energietechnik	WS	2	3
2162226	Technische Mechanik II für etec	SS	2	4
23349	Aufbau- und Verbindungstechnik für leistungselektronische Systeme	WS	2	3
23333	Workshop: Finite-Elemente-Methode in der Elektromagnetik	SS	2	3
2306321	Hybride und elektrische Fahrzeuge	SS	2+1	4

Berufsaussichten

Der Schwerpunkt "Elektrische Antriebe und Leistungselektronik" vermittelt eine vielseitige Qualifikation für die Berufsfelder Entwicklung, Fertigung, Projektierung, Vertrieb und Management in der Elektrotechnischen Industrie, den Elektrizitätsversorgungsunternehmen und in der nichtelektrotechnischen verarbeitenden Industrie sowie für Tätigkeiten in Ingenieurbüros und Forschungseinrichtungen.

Der besondere Reiz dieses Studienschwerpunkts besteht darin, dass es die klassischen Bereiche der Elektrotechnik mit der Informationstechnik verbindet und das Wissen vermittelt, um an innovativen, umweltfreundlichen Lösungen für die Problembereiche Mobilität, Energie und Produktion mitarbeiten zu können.

Schlüsselqualifikationen

Die Module für den Bereich der Schlüsselqualifikationen sind mit mindestens 6 Leistungspunkten aus Veranstaltungen der Fakultät für Elektrotechnik und Informationstechnik oder einer anderen Fakultät in Rücksprache mit dem Studienberater zu wählen.

Die ausgewählten Fächer sollten folgenden, beispielhaft ausgewählten Veranstaltungen ähnlich sein:

Fakultät für Elektrotechnik und Informationstechnik:

- Das Berufsfeld des Ingenieurs in modernen Unternehmen
- Seminar Projektmanagement für Ingenieure

Andere Fakultäten:

- Entrepreneurship I
- Industriebetriebswirtschaftslehre für Studierende des Maschinenbaus und der Elektrotechnik
- Tutorenschulung
- Nichttechnische Seminare mit Vortrag
- Sprachkurse

Zusatzfächer

Es können Zusatzfächer im Umfang von 30 LP in den Studienplan aufgenommen werden.

Vorlesungen

Hochleistungsstromrichter

Dozent: Prof. Dr.-Ing. M. Hiller Betreuung: Prof. Dr.-Ing. M. Hiller

Umfang: 2 SWS

Prüfung: Mündlich, Termin nach Vereinbarung

Unterlagen: Vorlesungsskript

Link: http://www.eti.kit.edu/studium.php

Für eine effiziente und vielseitige Nutzung von regenerativen Energiequellen ist der Einsatz von Stromrichtern erforderlich. Sie sorgen als steuer- und regelbares Leistungsstellglied für eine optimale Kopplung des Energieerzeugers mit dem Verbraucher

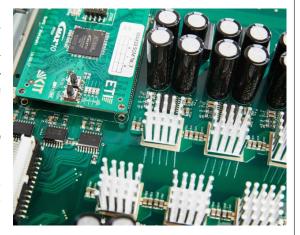
Diese Vorlesung behandelt vor allem Stromrichterschaltungen mit nicht abschaltbaren Halbleiterventilen wie Thyristoren und Dioden. Solche Stromrichter werden besonders im Bereich hoher Leistungen eingesetzt, wie z.B. bei der Hochspannungs-Gleichstrom-Übertragung (HGÜ). Zu den behandelten Grundschaltungen gehört die zweipulsige Brückenschaltung für einphasige Systeme, sowie die drei-, sechs- und höherpulsige Brückenschaltungen für Drehstromnetze. Bei diesen Schaltungen findet eine Umformung zwischen Gleich- und Wechselspannungen statt.

Neben der prinzipiellen Funktion der Stromrichter wird in der Vorlesung das Verhalten dieser Schaltungen unter realen Einsatzbedingungen erläutert. Außerdem werden die charakteristischen Eigenschaften der eingesetzten Leistungshalbleiter vorgestellt und Maßnahmen für deren Schutz vor Überspannungen und die Entwärmung aufgezeigt.

Leistungselektronik

Dozent: Prof. Dr.-Ing. M. Hiller Betreuung: M.Sc. Fabian Sommer

Umfang: 2+1 SWS (im Sommersemester)


Prüfung: schriftlich

Unterlagen: Vorlesungsskript

Link: http://www.eti.kit.edu/studium 902.php

Stromrichter sind heute bei allen Anwendungen, bei denen Maschinen drehzahlgeregelt betrieben werden sollen, eine wesentliche Kernkomponente. In der Vorlesung Leistungselektronik wird der Aufbau, die Funktion und die Steuerung von selbstgeführten Stromrichtern behandelt. Diese Stromrichter werden unter anderem in den folgenden Anwendungsgebieten eingesetzt:

- Regenerative Energien (Netzeinspeisung, Autarke Netze)
- Sicherung der Netzspannungsqualität (Unterbrechungsfreie Stromversorgung, Aktive Filter)
- Fahrzeuge (Stadtbahn, Vollbahn, Transrapid, Auto)
- Transport und Handhabung (Roboter, Krane, Vergnügungsparks) Bearbeitung (Walzwerke, Bergbau, Werkzeugmaschinen)

Entwurf elektrischer Maschinen

Dozent: Prof. Dr.-Ing. M. Doppelbauer

Betreuung: M.Sc. Tobias Zeller

Umfang: 2+1 SWS (im Wintersemester)

Prüfung: schriftlich

Unterlagen: Vorlesungsfolien

Link: http://www.eti.kit.edu/studium_1222.php

Die Vorlesung vermittelt die Grundlagen der Berechnung und des Entwurfs von elektrischen Maschinen. Dabei wird insbesondere auf die Drehfeld- und Krafterzeugung, auf die verschiedenen Wicklungen und auf den magnetischen Kreis abgehoben. Die Studenten werden in die Lage versetzt, elektrische Maschinen von Grund auf für bestimmte Anforderungen zu entwerfen.

Systemanalyse und Betriebsverhalten der Drehstrommaschine

Dozent: Dr.-Ing. K.P. Becker

Umfang: 4 SWS (im Sommersemester)

Prüfung: mündlich

Unterlagen: Vorlesungsskript

Link: http://www.eti.kit.edu/studium 433.php

Ausgehend von der magnetischen Kopplung einzelner Leiter wird die regelungstechnische Modellbildung für die Synchronmaschine und die Asynchronmaschine entwickelt. Diese Modellbildung ist unverzichtbare wissenschaftliche Basis für die Regelung robuster, genauer und schneller Antriebe in Industrie, Energieerzeugung und Fahrzeugtechnik. Die in der Vorlesung behandelte Theorie wird durch anschauliche Vorlesungsversuche zugänglich gemacht.

Praktikum: Elektrische Antriebe und Leistungselektronik

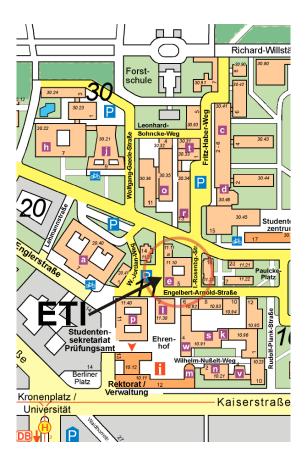
Dozent: Dr.-Ing. K.-P. Becker

Betreuung: Studentische Hilfskräfte und Mitarbeiter

Umfang: 4 SWS

Prüfung: Mündlich, vor oder nach jedem Praktikumsversuch. Mittelwertbildung aus den Teilnoten

Unterlagen: Versuchsbeschreibungen


Link: http://www.eti.kit.edu/studium.php

In diesem Praktikum wird das charakteristische Betriebsverhalten verschiedener elektrischer Maschinen und Stromrichter anschaulich gemacht. Die Maschinen werden in verschiedensten Betriebspunkten betrieben um aus den Messwerten Kennlinien für die Maschinen abzuleiten. Die in den Vorlesungen und den Versuchsunterlagen vermittelten Grundlagen werden dabei in den Versuchsdurchführungen angewendet. Weiterhin werden Betriebsarten von verschiedenen Stromrichtern untersucht. Dazu sind zum Beispiel Parameter der implementierten Regelungsalgorithmen einzustellen. Die Versuche werden üblicherweise in Gruppen zu je drei Studierenden durchgeführt. Die Ergebnisse werden in einem Protokoll festgehalten.

Anschrift des Beraters

M.Sc. Simon Foitzik

Elektrotechnisches Institut (ETI)

Karlsruher Institut für Technologie Engelbert-Arnold-Str. 5, Geb. 11.10 D-76131 Karlsruhe

Tel: 0721-608 48239 Email: simon.foitzik@kit.edu

Forschungsgebiete

Im Rahmen von Teamprojekten, Studien- und Masterarbeiten haben Sie die Möglichkeit, selbständig ein Teilgebiet aktueller Forschungsprojekte zu bearbeiten, Ihr erlerntes Wissen umzusetzen und Ihre eigenen Ideen einzubringen. Die derzeitigen Forschungsgebiete des Elektrotechnischen Instituts sind unter anderen:

- Modellierung und Regelung elektrischer Antriebe
- Neue Stromrichterschaltungen
- Anwendung von neuen aktiven und passiven Bauelementen in der Leistungselektronik
- Stromrichtersysteme für spezielle Anwendungen wie z.B. regenerative Energien und Fahrzeuge
- Regelungshard- und software
- Integration von elektrischen und mechanischen Systemen

Für nähere Informationen zu möglichen Arbeiten stehen Ihnen unsere Mitarbeiterinnen und Mitarbeiter gerne zur Verfügung.

Weitere Informationen sind auch unter http://www.eti.kit.edu/ zu finden.